最近在公司看Linux内核的nmi死锁检测功能的实现机制,当然,是因为它变了,所以我才看的,简单来说就是在红帽的某牛提交了一个内核patch:new nmi_watchdog using perf events,这个patch已经被合入到内核主线2.6.38版本,所以使用自该版本开始后内核的Linux系统,其/proc/interrupts显示的中断数不再按每秒1000次的频率增长。关于new nmi_watchdog问题,本文不再多说,后续写专篇文章,下面看使用systemtap调试Linux内核的几个案例,因为我最近就是通过这个手段来理解new nmi_watchdog的实现机制,相比利用printk或kgdb而言,使用systemtap更为简单方便,效率也大大提高。
系统环境:
[root@localhost ~]# cat /etc/issue CentOS release 6.2 (Final) Kernel r on an m [root@localhost ~]# uname -a Linux localhost.lenkydomain 3.6.11 #1 SMP Wed Feb 20 21:26:16 CST 2013 x86_64 x86_64 x86_64 GNU/Linux [root@localhost ~]# stap -V Systemtap translator/driver (version 2.1/0.152, non-git sources) Copyright (C) 2005-2012 Red Hat, Inc. and others This is free software; see the source for copying conditions. enabled features: LIBRPM LIBSQLITE3 NSS BOOST_SHARED_PTR TR1_UNORDERED_MAP NLS |
案例一,判断函数的真实执行路径,比如这个函数:
static
inline
void
x86_assign_hw_event(
struct
perf_event *event,
struct
cpu_hw_events *cpuc,
int
i)
{
struct
hw_perf_event *hwc = &event->hw;
hwc->idx = cpuc->assign[i];
hwc->last_cpu = smp_processor_id();
hwc->last_tag = ++cpuc->tags[i];
if
(hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
a-> hwc->config_base = 0;
hwc->event_base = 0;
}
else
if
(hwc->idx >= INTEL_PMC_IDX_FIXED) {
b-> hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
}
else
{
c-> hwc->config_base = x86_pmu_config_addr(hwc->idx);
hwc->event_base = x86_pmu_event_addr(hwc->idx);
hwc->event_base_rdpmc = hwc->idx;
}
}
我想知道nmi_watchdog的perf event走的是路径a?路径b?还是路径c?
以前利用printk的矬做法是修改这个函数,在a、b、c分别插入printk(“aaan”);、printk(“bbbn”);、printk(“cccn”);,然后需要重新编译内核,重启机器跑一次逻辑,再根据打印结果做判断。
利用systemtap的做法是在上面三个路径上分别下探测点,并设置执行语句为打印相应的字符串即可。
比如在上面的路径b处下探测点:
[root@localhost ~]# stap -ve 'probe kernel.statement("*@arch/x86/kernel/cpu/perf_event.c:824"){printf("bbbn")}' |
在另一个终端触发nmi_watchdog设置逻辑:
[root@localhost ~]# echo 0 > /proc/sys/kernel/nmi_watchdog ; echo 1 > /proc/sys/kernel/nmi_watchdog ; |
可以看到探测点被执行到,并且打印了相关信息,根据打印的信息来看,探测点被多次执行到:
[root@localhost ~]# stap -ve 'probe kernel.statement("*@arch/x86/kernel/cpu/perf_event.c:824"){printf("bbbn")}' Pass 1: parsed user script and 90 library script(s) using 190140virt/24872res/2788shr/22676data kb, in 170usr/10sys/178real ms. Pass 2: analyzed script: 2 probe(s), 0 function(s), 0 embed(s), 0 global(s) using 358304virt/79680res/18160shr/63552data kb, in 280usr/20sys/310real ms. Pass 3: translated to C into "/tmp/stapGGJa26/stap_b1c9e6f6ba4bf7f4d0a8eb727add532b_1128_src.c" using 358304virt/79840res/18312shr/63552data kb, in 10usr/0sys/5real ms. Pass 4: compiled C into "stap_b1c9e6f6ba4bf7f4d0a8eb727add532b_1128.ko" in 1210usr/290sys/1525real ms. Pass 5: starting run. bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb |
三处都下探测点的完整执行情况:
[root@localhost perf_study]# cat x86_assign_hw_event.stp probe kernel.statement( "*@arch/x86/kernel/cpu/perf_event.c:821" ){ printf ( "aaan" )} probe kernel.statement( "*@arch/x86/kernel/cpu/perf_event.c:824" ){ printf ( "bbbn" )} probe kernel.statement( "*@arch/x86/kernel/cpu/perf_event.c:828" ){ printf ( "cccn" )} [root@localhost perf_study]# stap x86_assign_hw_event.stp bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb |
另外一个常见的情况是要判断某个函数在某个逻辑中是否被跑到,以前的做法也是在函数的入口处加上打印语句,然后跑一遍功能逻辑,看是否有信息打印出来,现在利用systemtap可以这样:
[root@localhost perf_study]# stap -e 'probe kernel.function("x86_assign_hw_event"){printf("testn")}' test test test test test test test test |
案例二,获取函数调用堆栈,示例:
[root@localhost perf_study]# cat bt.stp #stap -v bt.stp schedule probe kernel.function(@1){ print( "----------------START-------------------------n" ) printf ( "In process [%s]n" , execname()) print_regs() print_backtrace() print( "----------------END-------------------------n" ) exit () } [root@localhost perf_study]# stap -v bt.stp x86_assign_hw_event Pass 1: parsed user script and 90 library script(s) using 190148virt/24884res/2784shr/22684data kb, in 170usr/10sys/179real ms. Pass 2: analyzed script: 1 probe(s), 4 function(s), 2 embed(s), 0 global(s) using 344464virt/50624res/3872shr/47224data kb, in 500usr/290sys/788real ms. Pass 3: using cached /root/.systemtap/cache/13/stap_13ea16365226db9619f3f14ab2a27efc_2536.c Pass 4: using cached /root/.systemtap/cache/13/stap_13ea16365226db9619f3f14ab2a27efc_2536.ko Pass 5: starting run. ----------------START------------------------- In process [swapper/0] RIP: ffffffff81024f40 RSP: ffff88022fc03d18 EFLAGS: 00000086 RAX: 0000000000000021 RBX: ffff88022fc0c6e0 RCX: 0000000000000000 RDX: ffff88022fc169f8 RSI: ffff88022fc03d7c RDI: ffff8802215efc00 RBP: ffff88022fc03d58 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000003 R11: 0000000000000003 R12: 0000000000000000 R13: ffff88022fc0c6e0 R14: ffff88022fc0c6e0 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88022fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000419248 CR3: 0000000222468000 CR4: 00000000000007f0 0xffffffff81024f40 : x86_pmu_enable+0x140/0x280 [kernel] 0xffffffff8110c7eb : perf_pmu_enable+0x2b/0x40 [kernel] 0xffffffff810247a9 : x86_pmu_commit_txn+0xa9/0xb0 [kernel] 0xffffffff8110ee8a : group_sched_in+0x13a/0x170 [kernel] 0xffffffff8110fb3d : __perf_event_enable+0x29d/0x2e0 [kernel] 0xffffffff8110d038 : remote_function+0x48/0x60 [kernel] 0xffffffff810b2371 : generic_smp_call_function_single_interrupt+0xa1/0x100 [kernel] 0xffffffff810383f7 : smp_call_function_single_interrupt+0x27/0x40 [kernel] 0xffffffff815276ca : call_function_single_interrupt+0x6a/0x70 [kernel] ----------------END------------------------- Pass 5: run completed in 10usr/30sys/4564real ms. |
案例三,打印某代码路径上的变量值:
[root@localhost perf_study]# stap -e 'probe kernel.statement("x86_assign_hw_event@arch/x86/kernel/cpu/perf_event.c:824"){printf("%dn", $hwc->idx)}' 33 33 33 33 33 33 33 33 |
如果有这样的提示错误:
[root@localhost perf_study]# stap -e 'probe kernel.statement("*@arch/x86/kernel/cpu/perf_event.c:824"){printf("%dn", $hwc->idx)}'
semantic error: not accessible at this address (0xffffffff81024f8e, dieoffset: 0x343357): identifier '$hwc' at <input>:1:81
source: probe kernel.statement("*@arch/x86/kernel/cpu/perf_event.c:824"){printf("%dn", $hwc->idx)}
^
Pass 2: analysis failed. Try again with another '--vp 01' option.
那么可以用-L选项看一下到底有哪些可用变量:
[root@localhost perf_study]# stap -L
'kernel.statement("*@arch/x86/kernel/cpu/perf_event.c:824")'
kernel.statement(
"x86_assign_hw_event@arch/x86/kernel/cpu/perf_event.c:824"
) $hwc:
struct
hw_perf_event* $i:
int
$cpuc:
struct
cpu_hw_events* $event:
struct
perf_event*
kernel.statement(
"x86_pmu_enable@arch/x86/kernel/cpu/perf_event.c:824"
) $n_running:
int
$cpuc:
struct
cpu_hw_events* $added:
int
可以看到,是因为*匹配到两处(应该是宏的开启与否导致代码行号有移动,但个人暂不确定具体原因是否如此),因此可以明确使用“x86_assign_hw_event@arch/x86/kernel/cpu/perf_event.c:824”。
案例四,获知函数指针的具体指向,比如获取下面event_init函数指针的具体指向:
struct pmu *perf_init_event(struct perf_event *event)
{
struct pmu *pmu = NULL;
int idx;
int ret;
idx = srcu_read_lock(&pmus_srcu);
rcu_read_lock();
pmu = idr_find(&pmu_idr, event->attr.type);
rcu_read_unlock();
if (pmu) {
event->pmu = pmu;
ret = pmu->event_init(event);
if (ret)
pmu = ERR_PTR(ret);
goto unlock;
}
list_for_each_entry_rcu(pmu, &pmus, entry) {
event->pmu = pmu;
ret = pmu->event_init(event);
if (!ret)
goto unlock;
if (ret != -ENOENT) {
pmu = ERR_PTR(ret);
goto unlock;
}
}
pmu = ERR_PTR(-ENOENT);
unlock:
srcu_read_unlock(&pmus_srcu, idx);
return pmu;
}
[root@localhost perf_study]# cat perf_init_event.stp
probe kernel.statement("perf_init_event@kernel/events/core.c:5892"){
addr = sprintf("%p", $pmu->event_init);
print("5892-Function name:n")
print_stack(addr)
}
probe kernel.statement("perf_init_event@kernel/events/core.c:5900"){
addr = sprintf("%p", $pmu->event_init);
print("5900-Function name:n")
print_stack(addr)
}
[root@localhost perf_study]# stap -v perf_init_event.stp
Pass 1: parsed user script and 90 library script(s) using 190092virt/24736res/2784shr/22628data kb, in 160usr/20sys/178real ms.
Pass 2: analyzed script: 2 probe(s), 7 function(s), 3 embed(s), 0 global(s) using 357076virt/62224res/3896shr/59836data kb, in 450usr/290sys/743real ms.
Pass 3: translated to C into "/tmp/stapsgSbwn/stap_8b6901af9c04b3e4907826ce793aca76_4839_src.c" using 354588virt/65020res/6820shr/59836data kb, in 170usr/10sys/175real ms.
Pass 4: compiled C into "stap_8b6901af9c04b3e4907826ce793aca76_4839.ko" in 2610usr/440sys/2892real ms.
Pass 5: starting run.
5900-Function name:
0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
5900-Function name:
0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
5900-Function name:
0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
5900-Function name:
0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
5900-Function name:
0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
5900-Function name:
0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
5900-Function name:
0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
5900-Function name:
0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
即指向的是函数x86_pmu_event_init()。
转载请注明:爱开源 » 使用systemtap调试Linux内核