最新消息:

Python下的正则表达式原理和优化笔记

python admin 3123浏览 0评论
摘要: 本文旨在总结一些编写表达式的技巧和原理。鉴于介绍python中re模块的使用方法的文章太多。所以本文在基础方面都是略过,而在回溯原理和一些技巧方面记录一点点学习总结。

目录:[  ]

  • 基础规则的介绍
  • python中的转义符号干扰
  • 基本字符
  • 量词限定符
  • 锚点符
  • 正则引擎内部的转义符号
  • 字符集
  • 括号的相关内容
  • 普通型括号
  • 扩展型括号
  • 匹配优先/忽略优先符号
  • 相关进阶知识
  • 传统型NFA中的顺序问题
  • 回溯/备用状态
  • 备用状态
  • 回溯机制两个要点
  • 固化分组思想
  • Python模拟固化过程
  • 多选结构
  • 一些优化的理念和技巧
  • 平衡法则
  • 处理不期望的匹配
  • 对数据的了解和假设
  • 引擎中一般存在的优化项
  • 其他技巧和补充内容
  • 过度回溯问题
  • 消除指数级匹配
  • 效率测试代码
  • 量词等价转换
  • 锚点优化的利用
  • 排除型数组的利用
  • 常识优化措施
  • 避免无休止匹配的核心公式
        最近的时间内对正则表达式进行了一点点学习。所选教材是《mastering regular expressions》,也就是所谓的《精通正则表达式》。读过一遍后,顿感正则表达式的强大和精湛之处。其中前三章是对正则表达式的基本规则的介绍和铺垫。七章以后是对在具体语言下的应用。而核心的部分则是四五六这三章节。
        其中第四章是讲了整个正则表达式的精华,即传统引擎NFA的回溯思想。第五章是一些例子下对回溯思想的理解。第六章则是对效率上的研究。根源也是在回溯思想上的引申和研究。
        这篇文章是我结合python官方re模块的文档以及这本书做一个相应的总结。
        其中官方的文档: http://docs.python.org/3.3/library/re.html
由于我都是在python上联系和使用的,所以后面的问题基本都是在python上提出来的,所以这本书中的其它正则流派我均不涉及。依书中,python和perl风格差不多,属于传统NFA引擎,也就是以“表达式主导“,采用回溯机制,匹配到即停止( 顺序敏感,不同于POSIX NFA等采用匹配最左最长的结果)。
对于回溯部分,以及谈及匹配的时候,将引擎的位置总是放在字符和字符之间,而不是字符本身。比如^对应的是第一个字符之前的那个”空白“位置。

基础规则的介绍

python中的转义符号干扰

        python中,命令行和脚本等,里面都会对转义符号做处理,此时的字符串会和正则表达式的引擎产生冲突。即在python中字符串’n’会被认为是换行符号,这样的话传入到re模块中时便不再是‘n’这字面上的两个符号,而是一个换行符。所以,我们在传入到正则引擎时,必须让引擎单纯的认为是一个”和一个’n’,所以需要分别加上转义符,成为’\n’,针对这个情况,python中使用raw_input方式,在字符串前加上r,使字符串中的转义符不再特殊处理(即python中不处理,统统丢给正则引擎来处理),那么换行符就是r’n’

基本字符

.        #普通模式下,匹配除换行符外的任意字符。(指定DOTALL标记以匹配所有字符)

量词限定符

*        #匹配前面的对象0个或多个。千万不要忽略这里的0的情况。
+        #匹配前面的对象1个或多个。这里面的重点是至少有一个。
?        #匹配前面的对象0个或1个。
{m}      #匹配前面的对象m次
{m,n}    #匹配前面的对象最少m次,最多n次。

锚点符

^        #匹配字符串开头位置,MULTILINE标记下,可以匹配任何n之后的位置
$        #匹配字符串结束位置,MULTILINE标记下,可以匹配任何n之前的位置

正则引擎内部的转义符号

m    m是数字,所谓的反向引用,即引用前面捕获型括号内的匹配的对象。数字是对应的括号顺序。
A    只匹配字符串开头
b    可以理解一个锚点的符号,此符号匹配的是单词的边界("单词边界符")。这其中的word定义为连续的字母,数字和下划线。
      准确的来说,b的位置是在w和W的交界处,当然还有字符串开始结束和w之间。
B    和b对应,本身匹配空字符,但是其位置是在非"边界"情况下,比如r'pyB'可以匹配python,但不能匹配'py,','py.' 等等
d    匹配数字
D    匹配非数字
s    未指定UNICODE和LOCALE标记时,等同于[ tnrfv],注意t之前是一个空格,表示也匹配空格。
S    与s相反
w    未指定UNICODE和LOCALE标记时,等同于[a-zA-Z0-9_]
W    和w相反
Z    只匹配字符串的结尾
<b style="font-weight: bold;">其他的一些python支持的转移符号也都有支持,如前面的't'</b>

字符集

尤其注意,这个字符集最终 只匹配一个字符(既不是空,也不是一个以上)!所以,前面的一些量词限定符,在这里失去了原有的意义。
另外,’-‘符号放在两个字符之间的时候,表示ASCII字符之间的所有字符,如[0-9],表示0到9.
而当放在字符集开头或者结尾,或者被”转义时候,则只是表示特指’-‘这个符号
最后,当在开头的地方使用’^’,表示排除型字符组.

 

括号的相关内容

普通型括号

(...)    普通捕获型括号,可以被number引用。

扩展型括号

(?aiLmsx)
a        re.A
i        re.I    #忽略大小写
L        re.L
m        re.M
s        re.S    #点号匹配包括换行符
x        re.X    #可以多行写表达式
(?:......)      #非捕获型括号,此括号不记录捕获内容,可节省空间
(?P<name>...)   #此捕获型括号可以使用name来调用,而不必依赖数字。调用时使用(?P=name)
(?#...)         #注释型括号,此括号完全被忽略
(?=...)         #lookahead assertion 如果后面是括号中的,则匹配成功
(?!...)         #negative lookahead assertion    如果后面不是括号中的,则匹配成功
(?<=...)        #positive lookbehind assertion    如果前面是括号中的,则匹配成功
(?<!...)        #negative lookbehind assertion    如果前面不是括号中的,则匹配成功
                #以上<span><b>四种类型断言</b></span>,本身均不匹配内容,只是告知正则引擎是否开始匹配或者停止。
                #另外在后两种后项断言中,必须为<b>定长断言</b>。
(?(id/name)yes-pattern|no-pattern)
                #如有由id或者name指定的组存在的话,将会匹配yes-pattern,否则将会匹配no-pattern,通常情况下no-pattern也可以省略。
<b style="font-weight: bold;">匹配优先/忽略优先符号</b>
在量词限定符中,默认的情况都是匹配优先,也就是说,在符合条件的情况下,正则引擎会尽量匹配多的字符( 贪婪规则
在这些符号后面加上’?’,则正则引擎会成为忽略优先,此时的正则引擎会优先匹配 尽可能少的情况。

如’??‘会优先匹配没有的情况,然后才是1个对象的情况。而{m,n}?则是优先匹配m个对象,而不是占多的n个对象。

相关进阶知识

首先放在最前面,python属于perl风格,属于传统型NFA引擎,与此相对的是POSIX NFA和DFA。所以大部分讨论都针对传统型NFA

传统型NFA中的顺序问题

NFA是基于正则表达式主导的引擎,同时,传统型NFA引擎会在找到符合状态的情况下立即停止。即得到匹配之后就停止引擎。相对来说,POSIX NFA 中不会立刻停止,其会在所有可能匹配的结果中寻求最长结果。这也是有些bug在传统型NFA中不会出现,但是放到后者中,会出现无法结束的情况。
引申一点,NFA学名为”非确定型有穷自动机“,DFA学名为”确定型有穷自动机“
这里的非确定和确定均是指被匹配的目标文本中的字符来说的,在NFA中,每个字符在一次匹配中即使被检测通过,也不能确定他是否真正通过,因为NFA中会出现回溯!甚至不止一两次。图例见后面例子。而在DFA中,由于是目标文本主导,所有对象字符只检测一遍,到文本结束后,过就是过,不过就不过。这也就是”确定“这个词的来历。

回溯/备用状态

备用状态

当出现可选分支时,会将其他的选项存储起来,作为备用状态。当前的匹配失败时,引擎进行回溯,则会回到最近的备用状态。
匹配的情况中,匹配优先与忽略优先某种意义上是一致的,只是顺序上有所区别。当存在多个匹配时,两种方式进行的情况很可能是不同的,但是当不存在匹配时,他们俩的情况是一致的,即必然尝试了所有的可能。

回溯机制两个要点

1,在是进行尝试还是跳过尝试时,匹配优先量词和忽略优先量词会作出相应决定。
2,匹配失败时,回溯需要返回到上一个备用状态,原则是后进先出(LIFO)

回溯典型举例:

python_pythoner_cn_2013061821

 

这里可以看到,传统型NFA到D点即匹配结束。而在POSIX NFA中,需要找到所有结果,并在这些结果中取最长的结果返回。
当无法出现匹配时,如下图,我们看到POSIX NFA和传统型NFA的匹配路径是一致的。
python_pythoner_cn_2013061822
python_pythoner_cn_2013061822
以上的例子引发了一个匹配时的思考,我们尽量避免使用’.*’ ,因为其总是可以匹配到最末或者行尾,既然我们只寻求引号之间的数据,往往可以借助排除型数组来完成工作。此例中,使用'[^”]*’这个的作用显而易见,我们只匹配非引号的内容,那么遇到第一个引号即可退出*号控制权。

固化分组思想

 固化分组的思想很重要, 但是python中并不支持。即在使用(?>…)括号中的匹配时产生的备选状态一旦离开括号,便会被引擎抛弃掉。举个典型的例子如:
'w+:'

这个匹配的情况是这样的,会优先去匹配所有的符合w的字符,然后假如字符串的末尾没有:,即匹配未找到冒号,此时触发回溯机制,他会迫使前面的w+释放字符,并且在交还的字符中重新尝试与’:’作比对。但是问题出现在w是不包含冒号的,显然无论如何都不会匹配成功,但是依照回溯机制,就会造成无谓的比对,这是对资源的浪费。所以我们就需要避免这种回溯,对此的方法就是将前面匹配到的内容固化不令其存储备用状态,那么引擎就会因为没有备用状态可用而结束匹配过程。大大减少回溯的次数。

 

Python模拟固化过程

虽然python中不支持,但书中提供了利用前向断言来模拟固化过程。

(?=(...))1
这里注意的是断言中的结果是不会保存备用状态的,虽然他本身不匹配内容,但是可以巧妙的添加一个捕获型括号来利用反向引用来达到此效果。对应上面的例子则是:
'(?=(w+))1:'

多选结构

多选结构在传统型NFA中, 既不是匹配优先也不是忽略优先。而是按照顺序进行的。这样就更可以很好的利用此特点进行调试。
1,在相对的应用中,在结果保证正确的情况下,应该优先的去匹配更可能出现的结果。即将可能性大的分支尽可能放在靠前。
2,多选结构的代价。不能滥用多选结构,因为当匹配到多选结构时,缓存会记录下相应数目的备用状态。举例子如:[abcdef]和‘a|b|c|d|e|f’这两个表达式很可能经过稍稍修改都能完成你的某个任务,
但是尽量选择字符型数组,显然后者会在每次比较时建立6个备用状态,会占用一定的内存。

 

一些优化的理念和技巧

平衡法则

好的正则表达式需寻求如下平衡:
  1. 只匹配期望的文本,排除不期望的文本。(善于使用非捕获型括号)
  2. 必须易于控制和理解
  3. 使用NFA引擎,必须保证效率(如果能够匹配,必须很快地返回匹配结果,如果不能匹配,应该在尽可能短的时间内报告匹配失败。

 

处理不期望的匹配

在处理过程中,我们总是习惯于使用星号等非硬性规定的量词,可能我们使用的匹配表达式中没有必须匹配的字符,如量词均为’?’,’*’等,那么其结果必然会出现不可控,这是我们必须需要处理的。

对数据的了解和假设

其实在处理很多数据的时候,我们的操作数据情况都是不一样的,有时会很规整,那么我们可以省掉考虑复杂表达式的情况,但是反过来,就需要思考多一些,对各种可能的情形做相应的处理。

引擎中一般存在的优化项

编译缓存

反复使用编译对象时,应该在使用前,使用re.compile()方法来进行编译,这样在后面调用时不必每次重新编译。节省时间。尤其是在循环体中反复调用正则匹配时。
锚点优化:
配合一些引擎的优化,应尽量将锚点单独凸显出来。对比^a|^b,其效率便不如^(a|b)
同样的道理,系统也会处理行尾锚点优化。所以在写相关正则时,如果有可能的话,将锚点使用出来。
 
量词优化
引擎中的优化,会对如.* 这样的量词进行统一对待,而不是按照传统的回溯规则,所以,从理论上说'(?:.)*’ 和’.*’是等价的,不过具体到引擎实现的时候,则会对’.*’进行优化。速度就产生了差异。
 
消除不必要括号以及字符组
这个在python中是否有 未知。只是在支持的引擎中,会对如[.]中转化成.,因为显然后者的效率更高(字符组处理引起额外开销)
以上是一些引擎带的优化,自然实际上是我们无法控制的的,不过了解一些后,对我们后面的一些处理和使用有很大帮助。

其他技巧和补充内容

过度回溯问题

消除指数级匹配

形如下面:
(w+)*
这种情况的表达式,在匹配长文本的时候,会遇到什么问题呢,如果在文本匹配失败时(意味着如果失败,则说明已经回溯了 所有的可能),想象一下,*号退一个状态,里面的+号就包括其余的所有状态,验证后,回到外面,*号退到倒数第二个备用状态,再回去,+号又要回溯一边比上一轮差1的备用状态数,当字符串很长时,就会出现指数级的回溯总数。系统就会’卡死’。甚至当有匹配时,这个匹配藏在回溯总数的中间时,也是会造成卡死的情况。所以,使用NFA的引擎时,必须要注意这个问题。

我们采用如下思路去避免这个问题:

占有优先量词(python中使用前向断言加反向引用模拟)
道理很简单,既然庞大的回溯数量都是被储存的备用状态导致的,那么我们直接使引擎放弃这些状态
import re
re_lx = re.compile(r'(?=(w+))1*d')

效率测试代码

在测试表达式的效率时,可借助以下代码比较所需时间。

import re
import time
re_lx1 = re.compile(r'your_re_1')
re_lx2 = re.compile(r'your_re_2')

starttime = time.time()
repeat_time = 100
for i in range(repeat_time):
    s='test text'*10000
    result = re_lx1.search(s)
time1 = time.time()-starttime
print(time1)

starttime = time.time()
for i in range(repeat_time):
    s='test text'*10000
    result = re_lx2.search(s)
time2 = time.time()-starttime
print(time2)

量词等价转换

现在来看看大括号量词的效率问题
1,当大括号修饰的对象是类似于字符数组或者d这种非确定性字符时,使用大括号效率高于重复叠加对象。即:
d{5}优于ddddd
经测试在python中后者优于前者。会快很多.
2,但是当重复的字符时确定的某一个字符时,则简单的重复叠加对象的效率会高一些。这是因为引擎会对单纯的字符串内部优化(虽然我们不知道具体优化是如何做到的)
aaaaa 优于a{5}
总体上说’d’ 肯定是慢于’1′
我使用的python3中的re模块,经测试,不使用量词会快。

锚点优化的利用

下面这个例子,在我们可以估计到的文本中,假设出现匹配的内容在字符串对象的结尾,那么我们利用如下第一个表达式是快于第二个表达式的,原因在于前者有锚点的优势。

re_lx1 = re.compile(r'd{5}$')
re_lx2 = re.compile(r'd{5}')

排除型数组的利用

继续上面的例子,我们发现w是包含d的,当使用匹配优先时,前面的w会掠过数字,之所以能匹配成功,或者确定失败,是后面的d迫使前面的量词交还一些字符。
知道这一点,我们应该尽量避免回溯,一个顺其自然的想法就是不让前面的匹配优先量词涉及到d

re_lx1 = re.compile(r'^w+(d{5})')
re_lx2 = re.compile(r'^[^d]+d{5}')    #优于上面的表达式

在我们没有时间去深入研究模块代码的时候,只能通过尝试和反复修改来得到最终的复合预期的表达式。

常识优化措施

然而我们利用可能的提升效果去尝试修改的时候很有可能 适得其反 , 因为某些我们看来缓慢的回溯在正则引擎内部会进行一定的优化 ,“取巧”的修改又可能会关闭或者避开了这些优化,所以结果也许会令我们很失望。
以下是书中提到的一些 常识性优化措施:
避免重新编译(循环外创建对象)
使用非捕获型括号(节省捕获时间和回溯时状态的数量)
善用锚点符号
不滥用字符组
提取文本和锚点。将他们从可能的多选分支结构中提取出来,会提取速度。
最可能的匹配表达式放在多选分支前面

避免无休止匹配的核心公式

opening normal*(special normal*)* closing
这个公式 特别用来对于匹配在两个特殊符号内的文本
有如下的三点避免无休止匹配的发生。
  1. special部分和normal部分匹配的开头不能重合。一定保证这两部分在任何情况下不能匹配相同的内容,不然在无法出现匹配时遍历所有情况,此时引擎的路径就不能确定。
  2. normal部分必须匹配至少一个字符
  3. special部分必须是固定长度的

转载自:http://my.oschina.net/o0Kira0o/blog/138516

转载请注明:爱开源 » Python下的正则表达式原理和优化笔记

您必须 登录 才能发表评论!