Python 版本说明
Python 是由 Guido van Rossum 开发的、可免费获得的、非常高级的解释型语言。其语法简单易懂,而其面向对象的语义功能强大(但又灵活)。Python 可以广泛使用并具有高度的可移植性。本文 Linux 服务器是 Ubuntu 12.10, Python 版本 是 2.7 。如果是 Python 3.0 版本的语法上有一定的出入。另外这里笔者所说的 Python 是 CPython,CPython 是用 C 语言实现的 Python 解释器,也是官方的并且是最广泛使用的 Python 解释器。除了 CPython 以外,还有用 Java 实现的 Jython 和用.NET 实现的 IronPython,使 Python 方便地和 Java 程序、.NET 程序集成。另外还有一些实验性的 Python 解释器比如 PyPy。CPython 是使用字节码的解释器,任何程序源代码在执行之前先要编译成字节码。它还有和几种其它语言(包括 C 语言)交互的外部函数接口。
工作原理:基于/proc 文件系统
Linux 系统为管理员提供了非常好的方法,使其可以在系统运行时更改内核,而不需要重新引导内核系统,这是通过/proc 虚拟文件系统实现的。/proc 文件虚拟系统是一种内核和内核模块用来向进程(process)发送信息的机制(所以叫做“/proc”),这个伪文件系统允许与内核内部数据结构交互,获取有关进程的有用信息,在运行中(on the fly)改变设置(通过改变内核参数)。与其他文件系统不同,/proc 存在于内存而不是硬盘中。proc 文件系统提供的信息如下:
- 进程信息:系统中的任何一个进程,在 proc 的子目录中都有一个同名的进程 ID,可以找到 cmdline、mem、root、stat、statm,以及 status。某些信息只有超级用户可见,例如进程根目录。每一个单独含有现有进程信息的进程有一些可用的专门链接,系统中的任何一个进程都有一个单独的自链接指向进程信息,其用处就是从进程中获取命令行信息。
- 系统信息:如果需要了解整个系统信息中也可以从/proc/stat 中获得,其中包括 CPU 占用情况、磁盘空间、内存对换、中断等。
- CPU 信息:利用/proc/CPUinfo 文件可以获得中央处理器的当前准确信息。
- 负载信息:/proc/loadavg 文件包含系统负载信息。
- 系统内存信息:/proc/meminfo 文件包含系统内存的详细信息,其中显示物理内存的数量、可用交换空间的数量,以及空闲内存的数量等。
表 1 是 /proc 目录中的主要文件的说明:
表 1 /proc 目录中的主要文件的说明
文件或目录名称 |
描 述 |
---|---|
apm |
高级电源管理信息 |
cmdline |
这个文件给出了内核启动的命令行 |
CPU info |
中央处理器信息 |
devices |
可以用到的设备(块设备/字符设备) |
dma |
显示当前使用的 DMA 通道 |
filesystems |
核心配置的文件系统 |
ioports |
当前使用的 I/O 端口 |
interrupts |
这个文件的每一行都有一个保留的中断 |
kcore |
系统物理内存映像 |
kmsg |
核心输出的消息,被送到日志文件 |
mdstat |
这个文件包含了由 md 设备驱动程序控制的 RAID 设备信息 |
loadavg |
系统平均负载均衡 |
meminfo |
存储器使用信息,包括物理内存和交换内存 |
modules |
这个文件给出可加载内核模块的信息。lsmod 程序用这些信息显示有关模块的名称,大小,使用数目方面的信息 |
net |
网络协议状态信息 |
partitions |
系统识别的分区表 |
pci |
pci 设备信息 |
scsi |
scsi 设备信息 |
self |
到查看/proc 程序进程目录的符号连接 |
stat |
这个文件包含的信息有 CPU 利用率,磁盘,内存页,内存对换,全部中断,接触开关以及赏赐自举时间 |
swaps |
显示的是交换分区的使用情况 |
uptime |
这个文件给出自从上次系统自举以来的秒数,以及其中有多少秒处于空闲 |
version |
这个文件只有一行内容,说明正在运行的内核版本。可以用标准的编程方法进行分析获得所需的系统信息 |
下面本文的几个例子都是使用
Python 脚本
读取
/proc 目录中的主要文件来实现实现对 Linux 服务器的监控的 。
使用 Python 脚本实现对 Linux 服务器的监控
对于 CPU(中央处理器)监测
脚本 1 名称 CPU1.py,作用获取 CPU 的信息。
清单 1.获取 CPU 的信息
#!/usr/bin/env Python from __future__ import print_function from collections import OrderedDict import pprint def CPUinfo(): ''' Return the information in /proc/CPUinfo as a dictionary in the following format: CPU_info['proc0']={...} CPU_info['proc1']={...} ''' CPUinfo=OrderedDict() procinfo=OrderedDict() nprocs = 0 with open('/proc/CPUinfo') as f: for line in f: if not line.strip(): # end of one processor CPUinfo['proc%s' % nprocs] = procinfo nprocs=nprocs+1 # Reset procinfo=OrderedDict() else: if len(line.split(':')) == 2: procinfo[line.split(':')[0].strip()] = line.split(':')[1].strip() else: procinfo[line.split(':')[0].strip()] = '' return CPUinfo if __name__=='__main__': CPUinfo = CPUinfo() for processor in CPUinfo.keys(): print(CPUinfo[processor]['model name'])
简单说明一下清单 1,读取/proc/CPUinfo 中的信息,返回 list,每核心一个 dict。其中 list 是一个使用方括号括起来的有序元素集合。List 可以作为以 0 下标开始的数组。Dict 是 Python 的内置数据类型之一, 它定义了键和值之间一对一的关系。OrderedDict 是一个字典子类,可以记住其内容增加的顺序。常规 dict 并不跟踪插入顺序,迭代处理时会根据键在散列表中存储的顺序来生成值。在 OrderedDict 中则相反,它会记住元素插入的顺序,并在创建迭代器时使用这个顺序。
可以使用 Python 命令运行脚本 CPU1.py 结果见图 1
# Python CPU1.py Intel(R) Celeron(R) CPU E3200 @ 2.40GHz
图 1.运行清单 1
也可以使用 chmod 命令添加权限收直接运行 CPU1.py
#chmod +x CPU1.py # ./CPU1.py
对于系统负载监测
脚本 2 名称 CPU2.py,作用获取系统的负载信息
清单 2 获取系统的负载信息
#!/usr/bin/env Python import os def load_stat(): loadavg = {} f = open("/proc/loadavg") con = f.read().split() f.close() loadavg['lavg_1']=con[0] loadavg['lavg_5']=con[1] loadavg['lavg_15']=con[2] loadavg['nr']=con[3] loadavg['last_pid']=con[4] return loadavg print "loadavg",load_stat()['lavg_15']
简单说明一下清单 2:清单 2 读取/proc/loadavg 中的信息,import os :Python 中 import 用于导入不同的模块,包括系统提供和自定义的模块。其基本形式为:import 模块名 [as 别名],如果只需要导入模块中的部分或全部内容可以用形式:from 模块名 import *来导入相应的模块。OS 模块 os 模块提供了一个统一的操作系统接口函数,os 模块能在不同操作系统平台如 nt,posix 中的特定函数间自动切换,从而实现跨平台操作。
可以使用 Python 命令运行脚本 CPU1.py 结果见图 2 # Python CPU2.py
图 2.运行清单 2
对于内存信息的获取
脚本 3 名称 mem.py,作用是获取内存使用情况信息
清单 3 获取内存使用情况
#!/usr/bin/env Python from __future__ import print_function from collections import OrderedDict def meminfo(): ''' Return the information in /proc/meminfo as a dictionary ''' meminfo=OrderedDict() with open('/proc/meminfo') as f: for line in f: meminfo[line.split(':')[0]] = line.split(':')[1].strip() return meminfo if __name__=='__main__': #print(meminfo()) meminfo = meminfo() print('Total memory: {0}'.format(meminfo['MemTotal'])) print('Free memory: {0}'.format(meminfo['MemFree']))
简单说明一下清单 3:清单 3 读取 proc/meminfo 中的信息,Python 字符串的 split 方法是用的频率还是比较多的。比如我们需要存储一个很长的数据,并且按照有结构的方法存储,方便以后取数据进行处理。当然可以用 json 的形式。但是也可以把数据存储到一个字段里面,然后有某种标示符来分割。 Python 中的 strip 用于去除字符串的首位字符,最后清单 3 打印出内存总数和空闲数。
可以使用 Python 命令运行脚本 mem.py 结果见图 3。 # Python mem.py
图 3.运行清单 3
对于网络接口的监测
脚本 4 名称是 net.py,作用获取网络接口的使用情况。
清单 4 net.py 获取网络接口的输入和输出
#!/usr/bin/env Python import time import sys if len(sys.argv) > 1: INTERFACE = sys.argv[1] else: INTERFACE = 'eth0' STATS = [] print 'Interface:',INTERFACE def rx(): ifstat = open('/proc/net/dev').readlines() for interface in ifstat: if INTERFACE in interface: stat = float(interface.split()[1]) STATS[0:] = [stat] def tx(): ifstat = open('/proc/net/dev').readlines() for interface in ifstat: if INTERFACE in interface: stat = float(interface.split()[9]) STATS[1:] = [stat] print 'In Out' rx() tx() while True: time.sleep(1) rxstat_o = list(STATS) rx() tx() RX = float(STATS[0]) RX_O = rxstat_o[0] TX = float(STATS[1]) TX_O = rxstat_o[1] RX_RATE = round((RX - RX_O)/1024/1024,3) TX_RATE = round((TX - TX_O)/1024/1024,3) print RX_RATE ,'MB ',TX_RATE ,'MB'
简单说明一下清单 4:清单 4 读取/proc/net/dev 中的信息,Python 中文件操作可以通过 open 函数,这的确很像 C 语言中的 fopen。通过 open 函数获取一个 file object,然后调用 read(),write()等方法对文件进行读写操作。另外 Python 将文本文件的内容读入可以操作的字符串变量非常容易。文件对象提供了三个“读”方法: read()、readline() 和 readlines()。每种方法可以接受一个变量以限制每次读取的数据量,但它们通常不使用变量。 .read() 每次读取整个文件,它通常用于将文件内容放到一个字符串变量中。然而 .read() 生成文件内容最直接的字符串表示,但对于连续的面向行的处理,它却是不必要的,并且如果文件大于可用内存,则不可能实现这种处理。.readline() 和 .readlines() 之间的差异是后者一次读取整个文件,象 .read() 一样。.readlines() 自动将文件内容分析成一个行的列表,该列表可以由 Python 的 for … in … 结构进行处理。另一方面,.readline() 每次只读取一行,通常比 .readlines() 慢得多。仅当没有足够内存可以一次读取整个文件时,才应该使用 .readline()。最后清单 4 打印出网络接口的输入和输出情况。
可以使用 Python 命令运行脚本 net.py 结果见图 4 #Python net.py
图 4.运行清单 4
监控 Apache 服务器进程的 Python 脚本
Apache 服务器进程可能会因为系统各种原因而出现异常退出,导致 Web 服务暂停。所以笔者写一个 Python 脚本文件:
清单 5 crtrl.py 监控 Apache 服务器进程的 Python 脚本
#!/usr/bin/env Python import os, sys, time while True: time.sleep(4) try: ret = os.popen('ps -C apache -o pid,cmd').readlines() if len(ret) < 2: print "apache 进程异常退出, 4 秒后重新启动" time.sleep(3) os.system("service apache2 restart") except: print "Error", sys.exc_info()[1]
设置文件权限为执行属性(使用命令 chmod +x crtrl.py),然后加入到/etc/rc.local 即可,一旦 Apache 服务器进程异常退出,该脚本自动检查并且重启。 简单说明一下清单 5 这个脚本不是基于/proc 伪文件系统的,是基于 Python 自己提供的一些模块来实现的 。这里使用的是 Python 的内嵌 time 模板,time 模块提供各种操作时间的函数。
转载请注明:爱开源 » 用 Python 脚本实现对 Linux 服务器的监控